
CSE 333 Section 5 - Heap, Templates, STL
Welcome back to Section! We’re glad that you’re here :)

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions.
● The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 1

#include <cstdlib>

class HeapInt{
public:
HeapInt() { x_ = new int(5); }

private:
int* x_;

};

int main(int argc, char** argv) {
HeapInt** hpint_ptr = new HeapInt*;
HeapInt* hpint= new HeapInt();
*hpint_ptr = hpint;
delete hpint_ptr;
return EXIT_SUCCESS;

}

Assuming an instance of the HeapInt class takes up 8 bytes (like a C-struct with just int*
x_), how many bytes of memory are leaked by this program? How would you fix the memory
leaks?

Exercise 2: Identify the memory error with the following code. Then fix it!

class HeapArr{
public:
HeapArr() { arr_ = new int[5]; }
~HeapArr() { delete [] arr_; }

private:
int* arr_;

};

int main(int argc, char** argv) {
HeapArr* hparr1 = new HeapArr;
HeapArr* hparr2 = new HeapArr(*hparr1); // cctor

delete hparr1;
delete hparr2;

return EXIT_SUCCESS;
}

Identify the memory error with the following code. Then fix it! Hint: Draw a memory diagram.
What happens when hparr1 gets deleted?

C++ Templates

Exercise 3: Template Class
Fill in the blanks below for the definition of a simple templated struct Node for a singly-linked list.
The struct has two public fields: a value, which is a pointer of template type T pointing to a
heap allocated payload, and a next, which is a pointer to another struct Node. The struct also
has a two-argument constructor that takes a T pointer for value and another Node<T> pointer
for next.

_______________ // template type definition
struct Node {

______________ // two-argument constructor

~Node() { delete value; } // destructor cleans up the payload

______________ // public field value
______________ // public field next

};

C++’s Standard Template Library (STL)
Containers, iterators, algorithms (sort, find, etc.), numerics

● general – .begin(), .end(), .size(), .erase()
● template <class T> class std::vectors – .operator[](), .push_back(),

.pop_back()
● template <class T> class std::list – .push_back(), .pop_back(),

.push_front(), .pop_front(), .sort()
● template <class Key, class T> class std::map – .operator[](), .insert(),

.find(), .count()
● template <class T1, class T2> struct std::pair – .first, .second

Exercise 4: Standard Template Library
Complete the function ChangeWords below. This function has as inputs a vector of strings,
and a map of <string, string> key-value pairs. The function should return a new
vector<string> value (not a pointer) that is a copy of the original vector except that every
string in the original vector that is found as a key in the map should be replaced by the
corresponding value from that key-value pair.

Example: if vector words is {"the", "secret", "number", "is", "xlii"} and map
subs is {{"secret", "magic"}, {"xlii", "42"}}, then ChangeWords(words,
subs) should return a new vector {"the", "magic", "number", "is", "42"}.

Hint: Remember that if m is a map, then referencing m[k] will insert a new key-value pair into
the map if k is not already a key in the map. You need to be sure your code doesn’t alter the
map by adding any new key-value pairs. (Technical nit: subs is not a const parameter because
you might want to use its operator[] in your solution, and [] is not a const function. It’s fine
to use [] as long as you don’t actually change the contents of the map subs.)

Write your code below. Assume that all necessary headers have already been written for you.

using namespace std;
vector<string> ChangeWords(const vector<string>& words,

map<string,string>& subs) {

}

